铸件的特点是容易获得其他方法不易获得的形状复杂的工件;铸件成本低;可以采用特殊工艺获得精密铸件,其表面不经加工即有理想的光洁度;铸件成形简单,比锻造价格便宜;但铸件内容易出现缺陷及非致密区,在强腐蚀及高压场合国内的技术一般不能保证铸件的质量。
锻件是使用锻打设备对棒料进行锻打成型,一般无法锻打出比较复杂的工件,需要较大的加工量,但锻件组织结构比较致密,不容易出现内部缺陷,因此广泛用于要求高的部件加工。
尽管铸造技术已经有了巨大的发展,并利用计算机技术辅助优化结构设计和浇铸过程的流体几何设计,但是要达到好质量要求仍然是困难的。
在铸造过程中,浇铸到模腔内的金属在凝固过程中可能会产生收缩、分离或气孔,这些问题使得“浇铸”铸件无法被苛刻环境应用领域所接受。收缩发生在两个过程中,温度高于熔点的金属冷却时产生收缩,随后在凝固过程中进一步收缩。第--次增加熔化金属补偿,但是固态冷却过程中的补偿就要靠加大尺寸。分离,或熔化物的化学分离,是在模腔内壁固化出一层后的凝固过程中发生,在很长的温度变化期间,低流动性使得小固体颗粒晶体_以树状结构形成和生长。刚开始的晶体,紧靠着模腔内壁,合金含量较少。在里面的核心部分,合金含量比较高,这使得预想的成分变得没有什么相似性。在每个晶体枝杈内,也存在着微观偏析。结果导致微孔、再生相沉淀和金属和非金属成分混杂。
十字万向轴厂家浅谈在冷却过程中,溶液中的气体逸出造成多孔性,或被截留在晶体枝杈之间形成微小气孔。此外,作为晶体固化和量的收缩,熔化物的替代品一定会沿着交错的晶体网络流过一段曲折的路程。流动阻力可能太高,从而导致微孔和多孔。
铸件内部的其它一些缺点是,凝固过程中,在不均匀收缩造成的应力集中和接近熔点温度下金属的低强度的综合作用下,出现的清晰裂缝和热撕裂。较低的铸造温度会形成冷疤,熔化金属出现的沙粒或炉渣的累积会导致污点。较低级别的铸造作业也可能造成其它缺陷。铸件的改进要满足质量的要求就要靠缺陷部位的磨削,焊补,热处理和重复测试和检验。即使在这种情祝下可能会显示需要通过重焊和机加工的细线裂缝。锻造的高温高压具有优异的性能。